Tropical Whitefly IPM Project

International cooperation to solve a global problem
Introduction

In 1996, a Whitefly IPM Task Force conceptualized the project “Sustainable Integrated Management of Whiteflies as Pests and Vectors of Plant Viruses in the Tropics”. The project, currently known as the Tropical Whitefly IPM Project (TWFP), defined the following activities as priorities:

a) Form a pantropical network for research on whiteflies and whitefly-transmitted viruses (geminiviruses or begomoviruses).
b) Diagnose and characterize whitefly-related problems in selected regions and crops.
c) Collect published and ‘grey’ literature on whiteflies as pests and vectors of plant viruses in the Tropics.
d) Conduct basic research on whitefly ecology and disease dynamics.
e) Test Integrated Pest Management strategies in selected pilot sites.
f) Train national scientists and farmers on the use of suitable IPM strategies.
g) Implement Farmer Participatory Research activities and disseminate technology using various communication media.
h) Assess impact of IPM strategies adopted.

Phase I of the Project, from 1997-2000, concentrated on activities a, b and c. Phase II, from 2001-2004, built on Phase I by developing, testing and implementing IPM strategies in selected pilot sites identified during Phase I. A web site was also developed to share information generated by the TWFP.

Phase III includes different activities in the areas of Farmer Participatory Research, Farmer Field Schools, Communication and Knowledge Management, and Technology Dissemination. To this end, the TWFP will collaborate with specialists in the above-mentioned areas, currently working within the Systemwide IPM Project.
Phase I

<table>
<thead>
<tr>
<th>Networking</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establish network links</td>
<td>Regions affected</td>
</tr>
<tr>
<td>Create directory of specialists</td>
<td>Crops attacked</td>
</tr>
<tr>
<td>Standardise methodology</td>
<td>Yield loss</td>
</tr>
<tr>
<td>Bibliographic searches</td>
<td>Pesticide use</td>
</tr>
<tr>
<td>Produce technical publications</td>
<td>Whitefly species</td>
</tr>
<tr>
<td>Develop a website</td>
<td>Whitefly biotypes</td>
</tr>
<tr>
<td></td>
<td>Begomoviruses</td>
</tr>
</tbody>
</table>

Phase II

<table>
<thead>
<tr>
<th>Basic Research</th>
<th>IPM Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whitefly biology</td>
<td>Resistant germplasm</td>
</tr>
<tr>
<td>Whitefly population dynamics</td>
<td>Biocontrol</td>
</tr>
<tr>
<td>Epidemiology</td>
<td>Cultural practices</td>
</tr>
<tr>
<td>Geographic Information Systems</td>
<td>Reduced pesticide use</td>
</tr>
<tr>
<td>Validating IPM Practices</td>
<td>IPM packages</td>
</tr>
</tbody>
</table>

Phase III

<table>
<thead>
<tr>
<th>Technology Dissemination</th>
<th>Impact Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farmer Participatory Research</td>
<td>Adoption of technology</td>
</tr>
<tr>
<td>Farmer Field Schools</td>
<td>Whitefly/Virus knowledge</td>
</tr>
<tr>
<td>Economic Analyses</td>
<td>Increased production</td>
</tr>
<tr>
<td>Crop improvement</td>
<td>Pesticide reduction</td>
</tr>
<tr>
<td>Information and Communication</td>
<td>Socio-economic benefits</td>
</tr>
<tr>
<td>Technology</td>
<td>Food security</td>
</tr>
</tbody>
</table>
The whitefly *Bemisia tabaci* transmits viruses that cause cassava mosaic and sweet potato virus disease, the main production problems of these crops in sub-Saharan Africa.

We are combining existing host-plant resistance with novel biocontrol and crop management strategies in a sustainable IPM manner.

Milestones

Yield losses pose a major threat to food security, thus making the development of effective IPM approaches essential.

Country-wide surveys of cassava mosaic geminiviruses (CMGs) in Tanzania revealed the occurrence

Contact Scientist
Dr James Legg <jlegg@iitaesarc.co.ug>
Whiteflies as vectors of cassava and sweet potato viruses in sub-Saharan Africa

Bemisia tabaci biotype B develops poorly on cassava clones, MEcu 72, CG 489-34, CMC-40, MPer 334, MPer 273 and MEcu 64. These clones are being tested for resistance to *Bemisia tabaci* in Africa.

Research plans for Phase III

The secret to the effective management of whitefly-vectored viruses of cassava and sweetpotato in sub-Saharan Africa, lies in combining virus and whitefly management components into an integrated package. In Phase III, we will work with farmers to validate such IPM approaches and disseminate results and experiences widely in the target regions.
Poor farmers in eastern Africa are increasingly adopting horticultural crops as additional sources of income. Unfortunately, whiteflies and whitefly-borne viruses attack these crops, resulting in severe yield losses and alarming pesticide abuse.

The implementation of IPM practices against *Bemisia tabaci* and *Trialeurodes vaporariorum* is expected to increase productivity and reduce pesticide abuse.

Milestones

Silverleaf symptoms found in Cucurbitaceae in the Sudan indicate that the aggressive *B. tabaci* biotype B is becoming established in the region. Horticultural zones in Tanzania already show 100% whitefly-borne virus infection in tomatoes. AVRDC and the University of Gezira, Sudan, have identified potential virus-
Whiteflies as pests and vectors of plant viruses in Eastern Africa

resistant tomatoes and cucurbit genotypes, respectively.
The *Trialeurodes* sp. whiteflies affect different horticultural crops in the highlands, requiring the implementation of an IPM approach.

The protection of a nascent horticultural crop industry against whiteflies and whitefly-borne viruses is critical to improve the livelihoods of small-scale horticultural farmers in Africa.

Research plans for Phase III

Work with farmers in a participatory manner in order to implement IPM measures to control whiteflies and whitefly-transmitted viruses in East Africa and other “hot spots”.

Host plant resistance to whiteflies in cultivated crops is rare. Resistance to a major whitefly pest of cassava, *Aleurotrachelus socialis*, has been identified in Ecuadorian and Peruvian clones.

MEcu 72 has consistently shown resistance to the cassava whitefly *A. socialis*. Laboratory experiments showed whitefly mortality levels around 70% for MEcu 72, MPer 334, and MEcu 64. This resistance is being used to develop high-yielding, whitefly-resistant cassava cultivars. It is expected that whitefly-resistant cultivars will reduce pesticide use and lower production costs for the small cassava farmer.

Milestones

A cassava hybrid, Nataima-31, from a MEcu 72 x MBra 12 cross, has
Whiteflies as cassava pests in South America have been field-evaluated for four years and released by the Colombian Ministry of Agriculture. Nataima-31 represents a unique case of a commodity cultivar released for whitefly resistance.

The resistance to whitefly damage identified in South American germplasm, seems to be promising to control *Bemisia tabaci*, the vector of cassava mosaic geminiviruses, in Africa.

Research plans for Phase III: Additional cassava germplasm will be field and laboratory tested and higher-yielding whitefly-resistant hybrids developed. An IPM package that includes resistance will be developed and implemented with growers through Farmer Participatory Research and Farmer Field Schools.
Whiteflies as pests and vectors

The whitefly *Bemisia tabaci* attacks food and industrial crops throughout the lowlands and mid-altitude valleys of Middle America.

Whitefly-transmitted viruses have ruined millions of small farmers who had attempted to diversify their traditional crops without technical assistance.

IPM measures contribute to sustainable food production and effective management of whitefly /begomovirus problems in mixed-cropping systems.

Milestones

Virus-resistant common bean varieties have been developed in the region, wherever *B. tabaci* transmits viruses to this important food crop.

Contact Scientist
Dr Francisco Morales <f.morales@cgiar.org>
Resistant bean cultivars yield over 800 kg/ha vs. 60 kg/ha produced by the susceptible local landrace ‘Rojo de Seda’, under virus attack.

Tomato plants protected by microtunnels produced over 60 MT/ha. Unprotected tomato plots were completely destroyed. Profits for protected tomatoes exceeded US$ 10,000/ha.

Research plans for Phase III

Virus-resistant bean varieties and physical whitefly-control methods for horticultural crops have been identified in Central America and Mexico. A major effort is now required to demonstrate to farmers the economic and health benefits derived from reduced pesticide applications. We plan to educate farmers about the economic, environmental and health benefits accrued from the reduction of crop protection costs and adoption of IPM strategies.
Whiteflies as pests in the Andean highlands

The whitefly *Trialeurodes vaporariorum* attacks crops at higher altitudes (>1000 m), where the whitefly *Bemisia tabaci* cannot thrive.

Widespread pesticide abuse in cropping systems affected by *Trialeurodes vaporariorum* causes the emergence of pesticide-resistant whitefly populations.

IPM measures constitute a sustainable way of managing the whitefly problem and reducing pesticide use.

Milestones

Promising IPM tactics have been identified, which include the replacement of broad-spectrum insecticides, timing applications.
Whiteflies as pests in the Andean highlands of South America according to pre-established action thresholds, and use of natural enemies, such as the wasp *Amitus fuscipennis*, and the fungus *Verticillium lecanii*.

Whitefly resistance to organophosphates, carbamates and pyrethroids, has been detected in Colombia and Ecuador. Whitefly management alternatives in both countries led to reduction in insecticide use of 60-70%.

Research plans for Phase III

To disseminate information to small scale farmers on the most effective IPM measures for whitefly control in the highlands of Tropical America and Africa. Technology adoption and economic impact will be assessed in a participatory manner.
Vegetables, particularly tomatoes and peppers, are important food crops that are now under attack by whitefly-borne viruses in South East Asia.

The development of geminivirus-resistant vegetables in South East Asia is critical to increasing productivity and improving rural livelihoods.

Milestones

The genetic variability of whitefly-transmitted viruses affecting tomatoes in South and South East Asia has been determined.

Sources of resistance to whitefly-borne viruses in tomato have been identified, which are effective both in Asia and the Americas.

Contact Scientist
Dr Peter Hanson <p.m.hanson@cgnet.com>
Three geminivirus-resistant tomato lines, ‘Sankranti’, ‘Nandi’, and ‘Vybhav’ were released in south India. Their yields were 30-35 t/ha versus 19 t/ha of the local variety ‘Arka Vikas’. Net profits for production of the resistant lines averaged US $3000 per hectare.

Research plans for Phase III

Durable and stable geminivirus resistance in tomato is best achieved by combining multiple resistance genes. Using new sources of resistance effective in the Americas and Asia, we will pyramid multiple and complementary resistance genes into new tomato cultivars. We will also investigate the potential use of safe and non-toxic inscticides to reduce vector populations on tomato and other crops as an alternative to toxic agrochemicals.
Promoting on-line access to scientific information

Website: The TWFP WebSite describes the project’s history, structure and global partnerships. Its interactive applications and databases, together with a complete list of keywords, allow users direct access to relevant IPM information on whiteflies and whitefly-transmitted viruses.

Team building: Through email and four mailing lists created using open source software, the TWFP promotes access to scientific information.

www.tropicalwhiteflyipmproject.org
Special emphasis is placed on sharing knowledge on the most suitable IPM methodologies available to minimize yield losses caused by whiteflies and whitefly-borne viruses, and to reduce pesticide abuse.

Printed material: A book describing the results of the extensive surveys and diagnosis work done during Phase I will be produced in 2004.

Communication Strategy for Phase III

A documentation database will be created to allow access to information such as summaries and full text of pertinent references. Website contents and interfaces will be translated into Spanish, French and Portuguese.

Three electronic bulletins will be developed for different audiences covering 1) traditional communication media, 2) national and regional associations of producers and farmers, and 3) national scientists.

A major effort will be made to produce simple, illustrated visual aids for small-scale farmers, on whiteflies, geminiviruses and best IPM practices available to control these pests.
Acknowledgments

The Tropical Whitefly IPM Project has been conducted in collaboration with:

National Research Organizations:
Agricultural Research Corporation (ARC), Sudan; Bvumbwe Agricultural Research Station, Malawi; Centro Nacional de Tecnología Agropecuaria y Forestal (CENTA), El Salvador; Corporación Colombiana de Investigación Agropecuaria (CORPOICA), Colombia; Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Brazil; Instituto Nacional Autónomo de Investigaciones Agropecuarias (INIAP), Ecuador; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Mexico; Kenya Agricultural Research Institute (KARI), Kenya; Lake Zone Agricultural Research and Development Institute (LZARDI), Tanzania; Namulonge Agricultural and Animal Production Research Institute (NAARI) of the National Agricultural Research Organization (NARO), Uganda; National Horticultural Research and Training Institute at Tengeru (HORTI), Tanzania; Selian Agricultural Research Institute (SARI), Tanzania.

Universities: Makerere University, Uganda; Montana State University, USA; Royal Veterinary and Agricultural University, Denmark; Tel-Aviv University, Israel; Universidad de El Salvador; University of Arizona, USA; University of Agricultural Sciences, India; University of Copenhagen, Denmark; University of Florida, USA; University of Gezira, Sudan; University of Wisconsin-Madison, USA.
The Tropical Whitefly IPM Project has been financed by the UK Department for International Development (DFID); the Danish International Development Assistance (DANIDA); the New Zealand agency for International Development (NZAID); Center for Economic Growth & Agricultural Development; and Office for Foreign Disaster Assistance (OFDA) of the United States Agency for International Development (USAID); the Agricultural Research Service of the United States Department of Agriculture (ARS-USDA); and the Australian Centre for International Agricultural Research - ACIAR. The TWFP is coordinated by CIAT with the collaboration of IITA, CIP and AVRDC.

Specialized Research Organizations:
Biologische Bundesanstalt für Land und Forstwirtschaft, Germany; CABI Bioscience, United Kingdom; Commonwealth Scientific & Industrial Research Organisation, Australia; Danish Institute of Agricultural Sciences, Denmark; Donald Danforth Plant Science Center, Missouri, USA; John Innes Centre, UK; Museum of Entomology of the Florida State Collection of Arthropods, USA; Natural Resources Institute (NRI), UK; New Zealand Institute for Crop and Food Research, Commonwealth Scientific & Industrial Research Organisation (CSIRO)

Non-governmental organizations:
Manejo Colaborativo y Uso Apropiado de Recursos Naturales en la Ecoregión de la Cuenca del Río El Ángel - MANRECUR and Grupo Randi-Randi, Ecuador.
Diminishing support for food production research and lack of technical assistance to small-scale farmers have resulted in severe environmental degradation and human health hazards in rural and urban communities due to pesticide overuse.

The Tropical Whitefly IPM Project conducts research in tropical regions of the world affected by whiteflies and whitefly-borne viruses, and promotes the adoption of sustainable IPM methodologies to control these pests and reduce pesticide use.